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We apply a recent quasiparticle model for the electronic properties of metallic helimagnets to calculate the
transport properties of three-dimensional systems in the helically ordered phase. We focus on the ballistic
regime �2T�F�1 at weak disorder �large elastic mean-free time �� or intermediate temperature. In this regime,
we find a leading temperature dependence of the electrical conductivity proportional to T. This is much
stronger than either the Fermi-liquid contribution �T2� or the contribution from helimagnon scattering in the
clean limit �T5/2�. It is reminiscent of the behavior of nonmagnetic two-dimensional metals, but the sign of the
effect is opposite to that in the nonmagnetic case. Experimental consequences of this result are discussed.
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I. INTRODUCTION

The electrical transport properties of metals have given
rise to various surprises over the last 30 years. Within a
nearly-free electron model with quenched or static disorder,
and to lowest order in the impurity concentration, the Boltz-
mann equation is exact and yields the familiar Drude expres-
sion for the electrical conductivity,

�0 = ne2�/me, �1.1�

with n as the electron number density, e as the electron
charge, me as the effective electron mass, and � as the elastic
mean-free time between collisions, which is weakly tempera-
ture dependent. Corrections to this result, in an expansion in
the small parameter 1 /�F�, with �F the Fermi energy, turned
out to be very interesting. To analyze them, one needs to
distinguish, in the thermodynamic limit, between the diffu-
sive regime at strong disorder or low temperature, T��1,
and the ballistic regime at weak disorder or intermediate
temperature, T��1. �The latter regime should not be con-
fused with ballistic transport in mesoscopic systems, where
the mean-free path is large compared to the system size.� In
three-dimensional �3D� simple metals in the diffusive re-
gime, the leading correction is nonanalytic in the temperature
T,1,2

��WL � �0
�T��1/2

��F��2 �3D,diffusive� . �1.2a�

The sign of this effect is positive, which reflects a negative
T-independent contribution that is nonuniversal �i.e., depends
on an ultraviolet cutoff�. The effect thus is localizing, i.e., it
decreases the conductivity compared to the Drude value. In
two-dimensional �2D� systems the effect is even more
dramatic,3

��WL � �0
ln�T��

�F�
�2D,diffusive� . �1.2b�

These results have been reviewed in Ref. 4. The logarithmic
divergency in 2D perturbation theory signals a breakdown of
transport theory, and the behavior at T=0 is insulating, albeit

very weakly so. These effects in noninteracting electron sys-
tems in general, and the logarithmic temperature dependence
in 2D in particular, are known as “weak localization.” They
can be understood in terms of constructive interference in the
electron-impurity scattering process,5 or in terms of the ex-
change of certain soft or massless diffusive modes �either
“Cooperons” or “diffusons”� between electrons.

Taking into account the screened Coulomb interaction be-
tween electrons leads to additional effects, and considerably
enhances the complexity of the calculations. In the absence
of quenched disorder, Fermi-liquid theory accurately de-
scribes the behavior and leads to a conductivity given by the
Drude formula

�C = ne2�C/me, �1.3a�

with a Coulomb scattering rate proportional to T2,6

1/�C =
�3

8

T2

�F
. �1.3b�

In the presence of both disorder and a Coulomb interaction,
and in the diffusive regime, the leading corrections in the
diffusive regime are qualitatively the same as those shown in
Eq. �1.1�.7,8 However, the physics behind the effects is dif-
ferent, and this is reflected in, e.g., the sensitivity of the
results to an external magnetic field. These effects are often
referred to as “Altshuler-Aronov effects.” In the ballistic re-
gime, T��1, the same problem has been analyzed for 2D
systems by Zala et al.9 They found

��AA � �0T/�F �2D,ballistic� . �1.4a�

The sign of the correction depends on the interaction
strength, but generically it is localizing, as it is in the diffu-
sive regime. More generally, the conductivity correction can
be written as

��AA/�0 =
1

�F�
f�T�� , �1.4b�

with f�x→0�� ln x, and f�x→	��x in 2D. The crossover
between the two limits was also determined in Ref. 9, and a
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physical interpretation in terms of scattering by Friedel os-
cillations was given.

The most appropriate interpretation of ��AA is as the re-
sult of a correction to the clean Fermi-liquid relaxation rate
1 /�C. In the ballistic regime, this correction is small com-
pared to 1 /�C by a factor of 1 /T��1. Adding this correction
to 1 /�C and 1 /� according to Matthiesen’s rule leads, in the
regime where 1 /�C�1 /�, to Eq. �1.4a�. Another possible
interpretation of ��AA is as an interaction-induced
temperature-dependent correction to �0. In the Coulomb
case, ��AA is small compared to both �C and �0, but we will
see later that this is not necessarily true if the correction is
mediated by a different interaction.

A general explanation of the physics behind these nonana-
lytic temperature dependencies is as follows. If there are
massless excitations that couple to the relevant electronic
degrees of freedom, then the lack of a mass in the excitation
propagator will lead to integrals that are singular in the in-
frared, and these singularities are protected by a nonzero
temperature T
0 �or frequency in the zero-temperature
limit�, which leads to a nonanalytic dependence on T. Notice
that the massless excitation does not have to be of nonelec-
tronic origin: With a proper classification of modes they can
themselves be electronic in nature without leading to double
counting. For instance, in the case of the weak-localization
singularities the relevant soft mode is either the Cooperon, or
the diffuson, which are electronic particle-hole excitations
that are distinct from, but couple to, the current mode whose
correlations determine the conductivity. An example of a
nonelectronic mode that couples to the current is an acoustic
phonon in the presence of an electron-phonon coupling.
Since the latter is relatively weak, this leads to a
T-dependence that is far subleading to the Fermi-liquid T2

contribution, namely, the well-known Bloch-Grüneisen T5

law.
In this paper we consider the exchange of a more exotic

soft mode, namely, the helimagnon excitation in metallic he-
limagnets. Helimagnets, the best known examples of which
are MnSi and FeGe, form a class of magnetic materials with
a preferred axis in spin space, characterized by a vector q.
The magnetization displays ferromagnetic order in any plane
perpendicular to q, but the direction of the magnetization
rotates as one moves along the q axis, forming a spiral with
wavelength 2� /q, where q��q� is the pitch wave number
�see Fig. 1�. A theory of the ordered phase has been devel-
oped in Refs. 10 and 11, which we will refer to as Paper I
and Paper II, respectively. The magnetic order splits the con-
duction band, as in the case of a ferromagnet, with a Stoner
splitting � that is proportional to the local magnetization.
The Goldstone mode related to the broken symmetry in spin

space, the helimagnon, has been studied in Paper II. As one
might expect, the helimagnon has an anisotropic frequency-
momentum relation,

�0�k� = �czkz
2 + c�k�

4 . �1.5a�

The helimagnon is thus ferromagnonlike in the direction per-
pendicular to q, and antiferromagnonlike in the direction
along q. Here and in what follows we take the pitch vector q
to point in the z direction, and k� is the component of the
wave vector k perpendicular to q. The elastic constants cz
and c� are given by

cz = 
z�
2q2/kF

4 , �1.5b�

c� = 
��2/kF
4 , �1.5c�

where kF is the Fermi wave number,12 and 
z and 
� are
numbers. For the model considered in Papers I and II their
values are


z = 1/36, 
� = 1/96. �1.6�

We will adopt these values for the purposes of this paper.
For later reference we note that the helical magnetization

structure is a result of the spin-orbit interaction, which is
weak compared to the exchange interaction. Consequently,
the pitch wave number q, which is proportional to the spin-
orbit interaction, is small compared to the Fermi wave num-
ber, q /kF�1.

The metallic helimagnet MnSi in particular is a very well-
studied material with many unusual properties that have been
reported and discussed in detail in Refs. 13–15 and Papers I
and II, among others. Here we focus on the electrical con-
ductivity in the ordered phase, which displays helical order
with a helix wavelength 2� /q�180 Å below a critical tem-
perature Tc�30 K at ambient pressure. Transport measure-
ments in the ordered phase have so far shown no significant
deviations from Fermi-liquid T2 behavior. Consistent with
this, a theoretical investigation of the clean limit in Paper II
showed that the leading effects of the helimagnons is a T5/2

correction to the Fermi-liquid behavior. Our motivation for
investigating disorder corrections to the clean behavior is
twofold: First, the residual resistance of the cleanest MnSi
samples puts them in the ballistic regime, and simple consid-
erations suggest very interesting behavior in that regime.
Second, MnSi shows very unusual transport behavior in the
paramagnetic phase, namely, a T3/2 behavior of the resistiv-
ity over almost three decades in temperature.15 The origin of
this is not understood, but it is natural to speculate that rem-
nants of the helical order, which are observed in the same
region, have something to do with it. It thus is prudent to first
do a comprehensive study of effects of the helical order in
the ordered phase, where conditions are more clearly defined.

At a technical level, adding quenched disorder to the for-
malism used in Papers I and II would be hard. We thus em-
ploy an effective model that was developed in Ref. 16, which
we will refer to as Paper III. Equations in Papers I–III will be
referenced in the format �x.y�, etc.17

FIG. 1. Schematic magnetization pattern in a helimagnet.

KIRKPATRICK, BELITZ, AND SAHA PHYSICAL REVIEW B 78, 094408 �2008�

094408-2



This paper is organized as follows: In Sec. II we list our
most important results for the convenience of readers who
may not be interested in the technical details. In Sec. III we
set up a transport theory based on the effective model, using
the Kubo formalism. We first check, and demonstrate the
efficiency of, the model by reproducing the clean-limit re-
sults of Paper II in Sec. III A, and then proceed with the
calculation in the ballistic limit in Sec. III B. We discuss our
results in Sec. IV. Some general points pertinent to transport
theory are made in Appendix A, and several calculational
details are relegated to additional appendices.

II. RESULTS

Since the details of the transport calculation for helimag-
nets are quite technical, we first list our most pertinent results
without any derivation. In the helically ordered phase, the
conductivity tensor is diagonal, but not isotropic. Taking the
pitch vector q in z direction, its nonzero elements are �zz
��L, and �xx=�yy ���. We find the leading correction to
the conductivity in the ballistic regime in 3D to be propor-
tional to �T. For a cubic crystal structure, as is the case for
MnSi, we have

��L = 3��� = − �0
��2�6

8
� �F

�
�2� q

kF
�3 T

�F
, �2.1�

where � is a parameter measuring deviations from a spherical
Fermi surface 	see Eq. �3.2� below
, and the prefactor of the
T dependence is accurate to lowest order in the small param-
eter q /kF.

This result is valid in a window of intermediate tempera-
tures. For asymptotically low temperatures, one finds diffu-
sive, rather than ballistic, transport behavior, and for higher
temperatures the ballistic behavior crosses over to either the
Fermi-liquid behavior or the clean helimagnet conductivity,
which is proportional to 1 /T5/2 �see Paper II�. For realistic
parameter values �for known helimagnets�, the temperature
window is

Tball � T � Tball��F���q/kF�3��F/��3, �2.2�

where Tball�� / ��F��2 is the lower limit of the ballistic re-
gime. In this regime the dominant temperature dependence
of the conductivity is given by Eq. �2.1�, and the conductiv-
ity is

�L,� = �0 + ��L,��T� . �2.3�

Notice that the sign of the correction is opposite to the Cou-
lomb case, Eq. �1.4a�. That is, the effect of the helimagnon
exchange is antilocalizing. We will derive these results in
Sec. III and discuss them in Sec. IV.

III. ELECTRICAL CONDUCTIVITY OF ITINERANT
HELIMAGNETS

We now set up a standard technical formalism for trans-
port theory in the context of the effective model for metallic
helimagnets that was given in Eq. �2.19� of Paper III. The
electrical conductivity tensor �ij can be expressed in terms of

an equilibrium current-current correlation function by means
of the Kubo formula

�ij�i�� =
i

i�
	�ij�i�� − �ij�i� = 0�
 , �3.1a�

where

�ij�i�� = − e2T �
i�1,i�2

1

V
�

p1,p2

ji�p1�j j�p2� �
�1,�2

� ��̄�1
�p1,i�1���1

�p1,i�1 + i��


���̄�2
�p2,i�2���2

�p2,i�2 − i��
 �3.1b�

is the current-current susceptibility or polarization function,
with �̄ and � as the fermionic fields. �. . .
 denotes an average
with respect to the action in Eq. �2.19� of Paper III. i�
� i�n= i2�T�n+1 /2� and i�� i�n= i2�Tn �n=integer� are
fermionic and bosonic Matsubara frequencies, respectively,
and for simplicity we suppress the index n. j�p�=��p /�p is
the current vertex, and for the electronic energy-momentum
relation we use an expression appropriate for a cubic crystal
structure,

�p =
p2

2me
+

�

2mekF
2 �px

2py
2 + py

2pz
2 + pz

2px
2� + O�p6� , �3.2�

with me as the electronic effective mass, and �=O�1� as a
dimensionless coupling constant that measures deviations
from a spherical Fermi surface.

The conductivity as written above is actually the transport
coefficient for the quasiparticles defined in Paper III, which
are described by the fermionic fields �̄ and �. The physical

conductivity is given in terms of the electron fields �̄ and �,
which are related to the quasiparticle fields by the transfor-
mation given in Eq. �2.9� of Paper III. However, we will
work to lowest order in the small parameter q /kF, and to this
accuracy the quasiparticle conductivity is the same as the
physical conductivity, as can readily be seen from Eq. �2.9�
of Paper III.

The four-point fermionic correlation function in Eq.
�3.1b� is conveniently expressed in terms of Green’s func-
tions G and a vector vertex function � with components �i,

�ij�i�� = − e2T�
i�

1

V�
�

iji�p�G��p,i��G��p,i� − i��

� ��
j �p;i�,i� − i�� , �3.3�

see Fig. 2. This expression is valid if the Green’s function
���1

�p1 , i�1��̄�2
�p2 , i�2�
 is diagonal in both momentum and

spin. For our effective model this is the case �whereas it was
not the case in Paper II�, and G is expressed in terms of the

π =ij jΓi ji

FIG. 2. Graphic representation of the polarization function. The
directed solid lines denote Green’s functions.
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self-energy � by means of the usual Dyson equation

G��p,i�� =
1

G0,�
−1 �p,i�� − ��

�p,i��
. �3.4�

Here G0 is the bare Green’s function, which is given by Eq.
�2.10c� of Paper III. Equations �3.3� and �3.4� just shift the
problem into the determination of the self-energy � and the
vertex function �. In order to evaluate the Kubo formula, it
is most convenient to separately treat the cases with and
without quenched disorder, respectively.

A. Clean limit

We first use the formalism developed so far to rederive
some of the results of Paper II for the conductivity of heli-
magnets in the absence of any elastic scattering. This serves
both as a check and as a demonstration of how much simpler
it is to evaluate the Kubo formula within the quasiparticle
model compared to the model used in Paper II. The calcula-
tion presented here is just a slight generalization of what is
presented in Appendix A, which serves to discuss the extent
to which the approximations used are controlled.

1. Conserving approximation for the conductivity

It is well known that, in clean systems, care must be taken
to treat the self-energy �, which enters the Green’s function
G, and the vertex function � consistently in a conserving
approximation.18,19 The simplest consistent approximation,
which is equivalent to the Boltzmann equation, is to treat the
self-energy in a self-consistent Born approximation, and the
vertex function in a ladder approximation. These are graphi-
cally represented in Fig. 3. Analytically we have integral
equations,

���p,i�� = − T�
i�

1

V�
k

V�k;p − k,p;i��

� G��p − k,i� − i�� , �3.5a�

for the self-energy, and

���p;i�,i� − i��

= ij�p� −
1

V
�

k
T�

i��

V�k;p − k,p;i���

�G��p − k,i� − i���G��p − k,i� − i�� − i��

� ���p − k;i� − i��,i� − i�� − i�� , �3.5b�

for the vertex function. V is the effective potential from Eq.
�2.18� of Paper III.

For completeness, we list the bare Green’s function from
Eq. �2.10c� of Paper III,

G0,��p,i�� =
1

i� − ���p�
, �3.6a�

where

���p� =
1

2
��p + �p+q − �− �����p − �p+q�2 + 4�2� ,

�3.6b�

with �p=�p−�F, �=1,2, and the effective potential from Eq.
�2.18� of Paper III,20

V�k;p,p�;i�� = V0��k,i��
�k,p�
�− k,p�� . �3.7a�

Here

V0 = �2�q2/8me
2� , �3.7b�

and

��k,i�� =
1

2NF

q2/3kF
2

�0
2�k� − �i��2 �3.7c�

is the helimagnon susceptibility. For later reference, we also
list its spectral function

���k,u� = Im ��k,i� → u + i0�

=
�

12NF

q2

kF
2

1

�0�k�
��	u − �0�k�


− �	u + �0�k�
� . �3.7d�

Finally,


�k,p� =
1

2�
�kz +

�

kF
2 	kzp�

2 + 2�k� · p��pz
� �3.7e�

is a vertex function. This specifies all input parameters for
the two coupled integral Eqs. �3.5�.

Since the two spin projections do not couple, we can re-
strict ourselves to one spin projection at a time, which effec-
tively reduces the problem to one of spinless electrons. In
what follows, we consider the contribution from the pole
�1�p� and drop the spin label elsewhere. In the end, the con-
tribution from the pole �2�p� can simply be added.

2. Solution of the integral equations

The coupled integral Eqs. �3.5� can now be solved by
following a slight generalization of the procedure outlined in
Appendix A. The conductivity is still given by Eq. �A5a�,
and Eqs. �A8� remain valid. We thus have the single-particle
relaxation rate given by

�0��� = − NF�
−	

	

du�nB� u

T
� + nF�u + �

T
��V̄0��u� ,

�3.8a�

with the zeroth moment of the potential spectrum given by

Σ =

Γ=Γ +

FIG. 3. Conserving approximation for the self-energy and the
vertex function. The dotted line denotes the effective potential.
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V̄0��u� =
1

NF
2

1

V2�
k,p

�„�1�k�…�„�1�p�…V��k − p;k,p;u� ,

�3.8b�

with the potential V from Eqs. �3.7�. This leads to

�0��� =
− �2q2

8me
2kF

4NF
�

−	

	

du�nB� u

T
� + nF�u + �

T
��

�
1

V2�
k,p

�„�1�k�…�„�1�p�…kzpz	k� · �p� − k��


� 	p� · �k� − p��
���k − p,u� . �3.9a�

Here nB�x�=1 / �ex−1� and nF�x�=1 / �ex+1� are the Bose and
Fermi distribution functions, respectively. Since the suscep-
tibility � is soft at zero wave number, to leading order in the
temperature this can be rewritten as

�0��� =
�2q2

8me
2kF

4NF
�

−	

	

du�nB� u

T
� + nF�u + �

T
��

�
1

V2�
k,p

�„�1�k�…�„�1�p�…

�kz
2	k� · �p� − k��
2���k − p,u� . �3.9b�

The same result is obtained from Eq. �3.5� of Paper III by
averaging 1 /��p ,�� over the Fermi surface. Evaluating the
integral leads to

�0��� =
5��4g���

1,024 � 63/4�� q

kF
�6� �F

�
�2� T

Tq
�3/2


0��/2T� ,

�3.9c�

with Tq=�q2 /6kF
2 . Here

g��� =
163

5�2�
0

1

d��2�1 − �2�5/2

��
0

2�

d�
sin2 � cos2 � cos2�2��

	D��,�,��
3/2 , �3.9d�

with

D��,�,�� = 1 + 2�	�2 + 2�1 − �2�sin2 � cos2 �


+ �2	�4 + �1 + 2�2 − 3�4�sin2 � cos2 �
 .

�3.9e�

We have normalized g such that g��=0�=1. 
0 is the n=0
member of a family of functions defined by


n�y� =
K�2n+1�/2

32
�

0

	

drr�2n+1�/2

�	2nB�r� + nF�r + 2y� + nF�r − 2y�
 , �3.9f�

with

K� = 4�
0

�/2

dx sin� x = 2�+1�2�� + 1

2
�/��� + 1� ,

�3.9g�

where � denotes the Gamma function. The same result is
obtained by integrating Eq. �3.29� of Paper II or Eq. �3.6a� of
Paper III over the Fermi surface. For an explanation of the
physical relevance of the temperature scale Tq, see the dis-
cussion after Eq. �4.5� below.

Similarly, Eqs. �A8� still hold, and we find a transport
relaxation rate

�1��� = − NF�
−	

	

du�nB� u

T
� + nF�u + �

T
��V̄1��u� ,

�3.10a�

with

V̄1��u� =
1

NF
2

1

V2�
k,p

�„�1�k�…�„�1�p�…

�
�k − p�2

2kF
2 � V��k − p;k,p;u� . �3.10b�

This agrees with Eq. �3.39b� of Paper II after integration over
the Fermi surface. Explicitly, we find

�1��� =
5��4g���
512 � 65/4�� q

kF
�8� �F

�
�2� T

Tq
�5/2


1��/2T� .

�3.10c�

Here 
1 is given by Eq. �3.9f� with n=1. The conductivity is
given by

� =
e2kF

2NF

6me
2 �

−	

	 d�

4T

1

cosh2��/2T�
1

�1���
, �3.11a�

which leads to a Drude formula

� = ne2�1/me. �3.11b�

Here n=kF
3 /6�2 is the electron density per spin, since we are

considering an effectively spinless problem; see the remark
at the end of III A1. The transport relaxation rate is

1/�1 =
�4g���

C1
�� q

kF
�8� �F

�
�2� T

Tq
�5/2

, �3.11c�

in agreement with Eq. �3.40a� of Paper II. Here

C1 =
256 � 65/4

5�
�

0

	 dx

cosh2�x�
1�x�
� 186. �3.11d�

In deriving Eqs. �3.10b� and �3.11d� we have assumed a
spherical Fermi surface whenever doing so does not make
the integral vanish. As a consequence, the � dependence of
the prefactors in Eqs. �3.10c� and �3.11d� is exact, within our
model, only to lowest order in �. We see that the current
effective model reproduces the results of Paper II for the
clean case, and we have also calculated some of the prefac-
tors that were not given explicitly in Paper II.
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B. Ballistic limit

We now add quenched disorder to the action, using the
standard impurity model with an elastic relaxation time �
described in Paper III. We then need to distinguish between
the diffusive limit, where the relaxation rate 1 /� is large
compared to the frequency or temperature in appropriate
units, and the ballistic one, where the opposite inequality
holds. In the diffusive limit, it is well known that an infinite
resummation of impurity diagrams is needed to work to a
given order in the disorder. In the ballistic limit, this is not
the case, and a straightforward diagrammatic perturbative ex-
pansion in the number of impurity lines is possible. This
yields impurity corrections to the clean conductivity. For the
case of electrons interacting via a screened Coulomb inter-
action, this has been investigated by Zala et al.,9 and the
development in the present case follows the same general
lines.

It is convenient to include the elastic relaxation rate in the
bare Green’s function in a self-consistent Born approxima-
tion �see Fig. 4�. That is, instead of the bare Green’s function
G0, Eq. �3.6a�, we use

G�p,i�� =
1

i� − �1�p� + �i/2��sgn �
. �3.12�

Here we absorb the correction to the bare elastic relaxation
rate that was discussed in Sec. III A of Paper III in 1 /�. In
addition to using G instead of G0, diagrams must be deco-
rated with explicit impurity lines, which diagrammatically
are denoted by dashed lines with crosses, and which carry a
factor

u0 = 1/2�NF� . �3.13�

The Green’s function G, Eq. �3.4�, can now be written as

G�p,i�� =
1

G−1�p,i�� − ���p,i��
, �3.14�

where the self-energy �� does not contain the simple impu-
rity self-energy that is incorporated in G.

We are interested in the leading disorder correction to the
clean resistivity calculated in Paper II, and in the leading
temperature dependence of that correction. To find this, it
suffices to work to first order in both the disorder and the
effective potential,21 and we can expand the conductivity up
to linear order in �� and the vertex function �. From Eqs.
�3.1a�, �3.3�, and �3.14� we find the following expression for
the static conductivity �ij =Re lim�→0 �ij�i�→�i0�:

�ij = �ij
�0� + ��ij

� + ��ij
� , �3.15a�

with

�ij
�0� =

1

V
�

p
ji�p�j j�p�

1

2T
� d�

4�

1

cosh2��/2T�

�	GR�p,��GA�p,�� − Re„GR�p,��…2
 , �3.15b�

��
ij
� =

1

V
�

p
ji�p�j j�p�

1

2T
� d�

4�

1

cosh2��/2T�

�2 Re	„GR�p,��…2GA�p,����R
�p,��

+ „GR�p,��…3��R
�p,��
 , �3.15c�

��ij
� =

1

V
�

p
ji�p�

1

2T
� d�

4�

1

cosh2��/2T�

�Re	GR�p,��GA�p,��� j�p;� + i0,� − i0�

− „GR�p,��…2� j�p;� + i0,� + i0�
 . �3.15d�

To write Eqs. �3.15�� we have performed the Matsubara fre-
quency sums and have introduced retarded and advanced
Green’s functions GR,A�p ,��=G�p , i�→�� i0�, and a re-
tarded self-energy ��R�p ,��=���p , i�→�+ i0�. Diagram-
matically, these contributions to the conductivity are shown
in Fig. 5. In evaluating these diagrams, we again make use of
the small parameter q /kF�1. To lowest order in q /kF, in
many cases the Green’s function G can be replaced by the
free-electron Green’s function, which greatly simplifies the
integrals.

We further notice that the conductivity tensor is not iso-
tropic, since the integrand depends on the helix pitch vector
q. However, simple symmetry considerations show that it is
still diagonal, with different components in the directions
parallel and perpendicular to q, respectively,

��ij = �ij	�iz��L + �1 − �iz����
 . �3.16�

The diagrams can be classified as follows. Diagram �o� in
Fig. 5�a� represents ��0�. To lowest order in the disorder, and
in q /kF, it yields the Drude conductivity, Eq. �1.1�,

�ij
�0� = �ij�0	1 + O�1/�F�,�q/kF�2�
 . �3.17�

= +

FIG. 4. Defining equation for the Green’s function G �thick
solid lines� in terms of the bare Green’s function G0 �thin solid
lines� and the impurity factor u0 �dashed line with cross�.

(o)

(i) (ii)

(a)

(b)

(c)

(iii) (iv) (v) (vi)

(vii) (viii) (ix) (x)

FIG. 5. Leading disorder corrections to the clean conductivity.
The solid lines denote the Green’s function G, dotted lines denote
the effective potential, and dashed lines with crosses denote the
impurity factor u0.
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Diagrams �i�, �iii�, �vii�, and �ix� contribute to ���, and
the remaining diagrams contribute to ���. Diagrams �i� and
�ii� in Fig. 5�b� do not contain explicit impurity lines, and
hence need to be evaluated to next-to-leading order in the
disorder. The diagrams in Fig. 5�c� contain an explicit impu-
rity line, and evaluating them to leading order suffices.

1. Diagrams without explicit impurity lines

Let us first consider diagrams �i� and �ii�. Standard tech-
niques yield

��ij
�i� =

− V0

4�

1

T
�

−	

	 d�

cosh2��/2T�
1

V
�

k
�

−	

	 du

�
���k,u�

��nB� u

T
�Re Jij

++−,+�k� +
1

2
nF�u − �

T
�

�Re	Jij
++−,+�k� − Jij

++−,−�k�
� , �3.18a�

��ij
�ii� =

− V0

8�

1

T
�

−	

	 d�

cosh2��/2T�
1

V
�

k
�

−	

	 du

�
���k,u�

��nB� u

T
�Re	Jij

+−,+−�k� − Iij
+−,+−�k�
 + nF�u − �

T
�

�Re	Jij
+−,+−�k� − Iij

+−,+−�k� − Jij
+−,++�k� + Iij

+−,++�k�
� .

�3.18b�

Here the J are defined by convolutions of Green’s functions,

Jij
++−,+�k� =

1

V
�

p
ji�p�j j�p�
�k,p�
�k,p

− k�GR�p�GR�p�GA�p�GR�p − k� ,

�3.19a�

Jij
++−,−�k� =

1

V
�

p
ji�p�j j�p�
�k,p�
�k,p

− k�GR�p�GR�p�GA�p�GA�p − k� ,

�3.19b�

Jij
+−,+−�k� =

1

V
�

p
ji�p�j j�p�
�k,p�
�k,p − k�GR�p�

�GA�p�GR�p − k�GA�p − k� , �3.19c�

Iij
+−,+−�k� =

1

V
�

p
ji�p�j j�k�
�k,p�
�k,p − k�GR�p�

�GA�p�GR�p − k�GA�p − k� , �3.19d�

where GR,A�p�=GR,A�p ,�=0�. Other convolutions are defined
analogously, with the upper � indices denoting retarded and
advanced Green’s functions, and the comma separating them
denoting the momentum structure of the convolution. In
writing Eqs. �3.18� we have neglected contributions from

other convolutions of four Green’s functions that are easily
shown to be of higher order in the disorder than the ones we
kept. For instance, a complete expression for diagram �i�
contains contributions from Jij

+++,− and Jij
+++,+, which are sub-

leading in this sense. Also, a complete evaluation of the dia-
grams yields nominal contributions proportional to ��, the
Kramers-Kronig transform of ��. These vanish once the real
part is taken, as is to be expected: By Fermi’s golden rule, to
first order in the interaction potential, the scattering cross
section and hence the conductivity depend only on the spec-
trum of the potential. Finally, we have used the fact that the
internal frequencies u and � in Eqs. �3.18� scale as the tem-
perature T. To find the leading temperature dependence, we
therefore can drop the frequency dependence of the Green’s
functions, and this is reflected in Eqs. �3.19�.

To evaluate the integrals in Eqs.�3.19� we work to lowest
order in q /kF. We further neglect �, since in our effective
single-spin-projection model it amounts �at q=0� to just a
shift of the Fermi energy. That is, we replace �1�p� in Eq.
�3.8b� by �p. We further use a nearly-free electron expression
for �p, i.e., we put �=0 in Eq. �3.2�. By comparison with
Paper II, we see that this does not qualitatively affect the
result �see below�. These simplifications lead in particular to
ji�p�= pi /me, and to lowest order in the disorder the integrals
can be evaluated in the familiar approximation that replaces
the integration over �p� by a contour integration over �p,22

which we will refer to as the Abrikosov-Gorkov-
Dzyaloshinski �AGD� approximation. Power counting shows
that the leading individual contributions to �� are of order
����2T3/2. This should be understood as the second term in
an expansion of 1 / �1 /�+T3/2�. �We recall that the clean
single-particle relaxation rate is proportional to T3/2.� We
know from Paper II, and from Sec. III A above, that these
terms must cancel, and that the leading temperature depen-
dence at O��2� is �2T5/2. These terms, and higher ones in the
diverging disorder expansion, must be resummed to yield
1 / �1 /�+T5/2�, which is the inverse of the clean-limit trans-
port rate added to the elastic scattering rate according to
Matthiessen’s rule. Corrections to these contributions are
smaller by a factor of 1 /�T1/2, which leads to conductivity
corrections ����T. These all cancel by the same mechanism
that leads to the cancellation of the �2T3/2 terms, and this can
be seen without performing the integrals. Finally, the convo-
lutions I in Eq. �3.18b� are subleading in temperature com-
pared to the J by power counting: At O��2� they contribute to
the clean-limit T5/2 term, and the leading corrections are
again small by a factor of 1 /�T1/2, which leads to conductiv-
ity corrections ����T2. We thus obtain the following result:

��ij
�i� + ��ij

�ii� = O��2T5/2� + o��T� , �3.20�

where o�x� denotes terms that are smaller than O�x�. The
arguments leading to this conclusion are outlined in Appen-
dix B. The term of O��2� was interpreted above, and we will
not calculate the leading temperature dependence of the term
of O��� since we will find contributions of O��T� from other
diagrams.
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2. Diagrams with explicit impurity lines

We now turn to the diagrams in Fig. 5�c�, which carry an
explicit impurity line. Their contribution to the conductivity
is of O���, and it thus suffices to calculate them to leading
order in the disorder. Before we do so, we identify the small
parameter that controls our disorder expansion. As we point
out in Appendix B, the expansion parameter for the convo-
lutions J that appear in the integrand in Eqs. �3.18� is �
=1 /vFk��, with vF=kF /me the Fermi velocity. According to
Eq. �1.5�, the transverse wave number scales as the square
root of the helimagnon frequency, which in turn scales as the
temperature by virtue of Eq. �3.7c�. The small expansion
parameter is thus

� = 1/4 � 61/4���F��2T/� , �3.21�

and this will turn out to be true for the diagrams in Fig. 5�c�
as well. This is different from the Coulomb case, where the
small parameter that controls the ballistic regime is 1 /T�,9

and it will be important for discussing the size of the ballistic
regime in Sec. IV below.

The diagrams in Fig. 5�c� all contain six Green’s functions
that factorize into two sets of momentum convolutions con-
taining n and 6−n Green’s functions, respectively, with
n=3 or n=4. Diagrams �iii�–�vi� contain the �3,3� partitions,
whereas diagrams �vii�–�x� contain the �4,2� partitions. The
same power-counting arguments that we employed for dia-
grams �i� and �ii�, and that are explained in Appendix B,
reveal the following: First, to lowest order in the small pa-
rameter �q /kF� �i.e., replacing the helimagnon Green’s func-
tions by nearly-free electron Green’s functions�, only the
�3,3� partitions contribute to O��T�, whereas the �4,2� parti-
tions are of higher order in the temperature. That is,

��ij
�vii�−�x� = o��T� �3.22�

to lowest order in �q /kF�, and we will evaluate all other
diagrams to lowest order in this small parameter as well. We
will come back to what happens to higher order in �q /kF� in
Sec. III B 3 below. Second, for the transverse conductivity
correction ��� only diagram �iii� contributes to O��T�,
whereas for ��L the other �3,3� partitions also contribute.

In addition, by considering the reality properties of the
convolutions involved, one finds that, third, diagram �vi� is
given in terms of the real part of a convolution that is purely
imaginary, and hence does not contribute. Therefore, in order
to obtain the transverse conductivity correction ��� to lead-
ing order in the small parameter �, Eq. �3.21�, one needs to
calculate only diagram �iii�. For the longitudinal correction
��L one needs to also consider diagrams �iv� and �v�.

Finally, a cursory inspection of the integrals in addition to
power counting shows that the terms that contain a bosonic
distribution function 	in analogy to the first terms in Eqs.
�3.18a� and �3.18b�, respectively
, have a potential to be of
O��T ln �� rather than of O��T�. However, the leading con-
tribution to diagram �iii� does not contain such terms. Dia-
grams �iv� and �v� do, but the logarithmic terms cancel be-
tween these two diagrams, and this can be seen without
performing the integrals. We thus conclude

��� = ���
�iii� + o��T� = O��T� + o��T� , �3.23a�

��L = ��L
�iii� + ��L

�iv,v� + o��T� = O��T� + o��T� .

�3.23b�

a. Diagram (iii). After the above preliminary consider-
ations, we now evaluate diagram �iii�. The leading contribu-
tion can be written as

��ij
�iii� =

u0V0

8�

1

T
�

−	

	 d�

cosh2��/2T�
1

V
�

k
�

−	

	 du

�

� nF�u − �

T
����k,u�Kij

++−L++,−�k� . �3.24�

Here

Kij
++−�k� =

1

V
�

p

pipj

me
2 GR�p�GR�p�GA�p�

= − �ij
2�i

3

kF
2NF

me
2 �2 + O��� , �3.25�

and

L++,−�k� =
1

V
�

p

�k;p�
�k;p − k�GR�p�GR�p�GA�p − k�

= i�22�

3

NFme
2

�2kF
2 + O�1/�,k�

2 � . �3.26�

The second lines in Eqs. �3.25� and �3.26� are easy to obtain
in the AGD approximation. Only the term proportional to k�

in 
�k ;p�, Eq. �3.7e�, contributes to the leading temperature
dependence, hence the proportionality to �2. We again have
dropped the frequency dependence of the Green’s functions,
since it does not contribute to the leading temperature depen-
dence. Consequently, the integral over � in Eq. �3.24� can be
performed. Using the fact that the helimagnon spectrum �� is
an odd function of the frequency, we can write

��ij
�iii� =

− u0V0

4�

1

V�
k
�

−	

	 du

�
���k,u�C�u/2T�Kij

++−L++,−�k� ,

�3.27a�

with

C�x� = coth x − x/sinh2 x . �3.27b�

We next cast the expressions corresponding to diagrams
�iv� and �v� in an analogous form, before performing the final
integrals.

b. Diagrams (iv) and (v). Using the same techniques as
for diagram �iii�, we find for the leading contributions to
diagrams �iv� and �v�

��ij
�iv�+�v� =

− u0V0

2�

1

V�
k
�

−	

	 du

�
���k,u�C�u/2T�

� Mi
+−,+�k�Mj

+−,+�k� . �3.28�

Here
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Mi
+−,+�k� =

1

V
�

p

pi

me

�k;p�GR�p�GA�p�GR�p − k�

= − �iz
2�

3
�

NF

�
� + O��0� . �3.29�

3. Conductivity in the ballistic limit

Before we collect our results, we return to the question of
the diagrams that do not contribute to O��T� to lowest order
in q /kF. A calculation shows that at the next order in q /kF
they do contribute, i.e., their behavior is the same as that of
the diagrams we kept, only the prefactor carries an additional
factor of �q /kF�2. For diagram �vii� this is demonstrated in
Appendix C; for others, the results are analogous. We note
that if one wanted to keep these terms, one would also have
to take into account the difference between the quasiparticle
conductivity and the physical conductivity that was men-
tioned at the beginning of Sec. III.

Collecting our results, we now have

��ij =
− u0V0

4�

1

V�
k
�

−	

	 du

�
��k,u�C�u/2T�

� 	Kij
++,−L++,−�k� + 2Mi

+−,+�k�Mj
+−,+�k�
 .

�3.30�

Here we show only terms that contribute to the leading tem-
perature dependence of ��. With help of Eqs. �3.25�, �3.26�,
�3.29�, �3.27b�, and �3.7d� the final integrals are easily per-
formed. We find

��� =
��2

576
�0� q

kF
�3� �F

�
�2� �

2�F
−

T

�F
� , �3.31a�

��L = 3���. �3.31b�

This result is valid in a temperature regime Tball�T�Tq, as
explained below. � is an ultraviolet energy cutoff, which
must be imposed, as in the Coulomb case,9 since only the
hydrodynamic contributions to various parts of the inte-
grands have been kept. The cutoff-dependent part of �� is
temperature independent; it is an interaction correction to the
Drude conductivity. The temperature-dependent part is inde-
pendent of the cutoff. Notice that the constant contribution to
�� is positive, i.e., the effect of weak disorder in conjunction
with helimagnons is antilocalizing. Accordingly, the tem-
perature correction to the conductivity is negative.

A necessary condition for this result to be valid is that the
parameter �, Eq. �3.21�, be small,

T 
 Tball � �/16�6��F��2. �3.32�

The ballistic temperature scale Tball defined in this way
marks the lower temperature limit of the ballistic regime.
Another necessary condition is related to the fact that the
helimagnon resonance frequency �0 has the form shown in
Eq. �1.5a� only for wave numbers k�q. As was explained in
Paper II, this defines another temperature scale Tq
=�q2 /6kF

2 , and in order for Eqs. �3.31� to hold we must have

T�Tq. This also identifies the order of magnitude of the UV
cutoff: �=O�Tq�. The temperature-dependent contribution to
�� in Eqs. �3.31� is thus a small correction to the constant
contribution. For k
q or, equivalently, T
Tq, the resonance
frequency is �0�k���c�k2, and hence the components of k
scale as kz�k��T1/2. Repeating the power counting argu-
ments of Sec. III B 2 �see also Appendix B�, this yields, for
the temperature-dependent part of ��,

����T� � ��L�T� � − �0� q

kF
�4� �F

�
�3/2� T

�F
�1/2

,

�3.33�

which is valid for T
Tq. We note that this is just Eqs. �3.31�
times �Tq /T�1/2, so in the regime T
Tq, effectively a factor
of �T gets replaced by �Tq. We will discuss additional tem-
perature scales, and the size of the ballistic regime, in Sec.
IV below.

IV. DISCUSSION AND CONCLUSION

We now discuss our results. First, we give a detailed dis-
cussion of the range of validity of our results, and of the
various temperature scales involved. We then give semiquan-
titative estimates for the size of the predicted effects. In
evaluating these estimates, one should keep in mind that the
qualitative dependences on various parameters are accurate,
and so are the ratios of temperature scales, etc., but the
number-valued prefactors are model dependent and should
not be taken too seriously.

A. Temperature scales and relaxation rates

We start by giving an alternative derivation of the small
parameter for the weak-disorder expansion, Eq. �3.21�. Con-
sider the Green’s function G given in Eq. �3.12�. With k as
the soft wave number and u as the soft frequency, the k
dependence of the various terms in the perturbation theory is
given by its spectrum,

G�p − k,u� = − ��	u − �1�p − k�
 , �4.1a�

with � as a Lorentzian of the form

��x� =
1

�

1/2�

x2 + 1/4�2 . �4.1b�

In the clean limit, �→	, ��x� turns into a delta function. To
determine the relevant scale, we recall the scaling of fre-
quency or temperature with the components of the wave vec-
tor. From Eq. �1.5a� we have

u � T � �0�k� � �czkz � �c�k�
2 . �4.2�

With p on the Fermi surface, i.e., �1�p�=0, we have, from
Eq. �3.6b�, �1�p−k�=−p� ·k� /me+O�kz�. We now scale u
with T, p with kF, and k�

2 with T /�c�. Keeping only leading
terms, we can write
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G��p − k,u� = − ��
�/2

�p̃ · k�̃�2 + �2/4
, �4.3�

with p̃ and k̃ as the scaled vectors p and k, respectively, and
� from Eq. �3.21�. This confirms the role of � as the small
parameter for the disorder expansion.

�=1 defines the temperature scale that was denoted by
Tball in Sec. III B 3, and that we list here again:

Tball =
1

16�6

�

��F��2 . �4.4�

For a given disorder strength, this defines the lower tempera-
ture limit of the ballistic regime.

A second relevant temperature scale is

Tq = �q2/6kF
2 , �4.5�

which was introduced in Paper II. As explained there, it is
the energy scale related to the crossover from the anisotropic
helimagnon spectrum to an isotropic ferromagnetlike spec-
trum with �0�k��k2. Tq
Tball provided �F�

 �3 /8�6�1/2kF /q�0.4kF /q. With q /kF�0.02, as is the case
in MnSi, this means �F��20, which always holds for good
metals. The ballistic conductivity correction is then given by
Eqs. �3.31� in the temperature window Tball�T�Tq, and by
Eq. �3.33� for T
Tq. For T�Tball one has diffusive rather
than ballistic transport behavior.

At this point it is useful to cast our result for the conduc-
tivity correction in the form of a correction to the relaxation
rate. The Drude conductivity plus the ballistic correction is
�=�0+��ball, which implies a total relaxation rate in the
ballistic regime

1

�
+

1

�ball
=

1

�
�1 −

��ball

�0
� =

1

�
+

1

�

��2

1,152
� q

kF
�5�F

�

T

Tq
.

�4.6�

Here we have absorbed the constant contribution to the bal-
listic rate in the Drude rate, and we have taken the correction
to the longitudinal conductivity. To obtain the total transport
rate we also need to add the clean-limit rate 1 /�1 from Paper
II or Sec. III A above, which in the current context is ob-
tained from a ladder resummation of diagrams �i� and �ii� in
Fig. 5 and taking the clean limit. For �=1 we have g1��
=1��0.2, and from Eq. �3.11c� we find

1

�1
�

�

50
� q

kF
�8� �F

�
�2� T

Tq
�5/2

, �4.7�

for a total transport rate in the ballistic regime

1

�tr
=

1

�1
+

1

�
+

1

�ball

�
�

50
� q

kF
�8� �F

�
�2� T

Tq
�5/2

+
1

�
+

1

350�
� q

kF
�5�F

�

T

Tq
. �4.8�

Here we have put �=1 in Eq. �4.6� and have approximated

the numerical prefactor. It also is illustrative to recall the
clean-limit single-particle relaxation rate from Paper II,
which for generic wave vectors is 	see also Eq. �3.9c�


1

�clean
s.p. � �� q

kF
�6� �F

�
�2� T

Tq
�3/2

. �4.9�

Notice that the clean transport rate is smaller than the clean
single-particle rate by a factor of T /�, as was shown in Paper
II, whereas the ballistic transport rate is qualitatively the
same as the ballistic single-particle rate 	see Eq. �4.6� and
Eq. �3.12� of Paper III
. That is, the cancellation mechanism
between self-energy contributions and vertex corrections that
is characteristic for clean transport problems �and also holds,
e.g., in the electron-phonon scattering problem� is not opera-
tive in the presence of quenched disorder. As a result, 1 /�ball
is small compared to 1 /�clean

s.p. by a factor of �, Eq. �3.21�, as
was to be expected, but it is not necessarily small compared
to the clean transport rate 1 /�clean. Rather, the ballistic be-
havior will cross over to the clean behavior at a temperature

T1−5/2 � 0.05�/��F��2/3, �4.10�

which provides a third relevant temperature scale. A fourth
one is given by the temperature where the ballistic rate be-
comes equal to the clean Fermi-liquid rate 1 /�FL=T2 /�F,
which is

T1−2 �
10−3

�
� q

kF
�3� �F

�
�2

. �4.11�

Tq, T1−5/2, and T1−2 all provide upper limits for the regime
where the conductivity correction is given by Eqs. �3.31�. We
thus conclude that the latter are valid in a temperature win-
dow given by

Tball � T � Min�Tq,T1−5/2,T1−2� . �4.12�

Let us first compare T1−5/2 with T1−2 by writing the latter
as

T1−2 � T1−5/2
1

50��F��1/3� q

kF
�3� �F

�
�3

. �4.13�

If �=O��F�, then T1−2�T1−5/2. In a weak helimagnet, where
� /�F�q /kF, this is still true due to the small factor
1 /50��F��1/3�1.

Similarly, we can write

T1−2 � Tq
1

200�F�
� q

kF
�� �F

�
�3

. �4.14�

We again conclude that T1−2 is the smaller of the two tem-
perature scales provided that

�

�F
�

1

5��F��1/3� q

kF
�1/3

. �4.15�

As long as this condition is fulfilled, T1−2 is the smallest of
the three lower bounds. We now compare T1−2 and Tball by
writing
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T1−2 � Tball
�F�

25
� q

kF
�3� �F

�
�3

. �4.16�

T1−2 thus is larger than Tball provided

�

�F
�

1

3
��F��1/3 q

kF
. �4.17�

In order for inequalities �4.15� and �4.17� to be compatible,
we must have

�F� 
 kF/q , �4.18�

which is also roughly the condition for Tq
Tball. This is not
a very stringent condition, and will generally be fulfilled in
reasonably clean systems.

We conclude that, if inequalities �4.18� and �4.17� hold,
the ballistic conductivity correction is given by Eqs. �3.31� in
the temperature regime Tball�T�T1−2. For lower tempera-
tures the behavior crosses over to diffusive transport, and for
higher ones, to Fermi-liquid behavior. If Eq. �4.18� holds, but
Eq. �4.17� is violated, then the Fermi-liquid T2 behavior will
mask the ballistic T dependence, and will have to be sub-
tracted in order to observe the ballistic effect.

We also need to remember that due to the broken rota-
tional invariance in a solid-state system, there actually is a
term proportional to k�

2 under the square root in Eq. �1.5a�,
but it has a small prefactor. As was explained in Papers I and
II, this becomes relevant for temperatures below a scale Tso
=Tq�q /kF�2. In this context we further need to come back to
our discussion of the screening of the effective interaction
given in Eqs. �3.7� �see Ref. 20�. As was shown in Eq. �2.21�
of Paper III, screening modifies the temperature scale Tso to

T̃so=Tq�q /kF�2�qvF /��2. Requiring that this temperature
scale is smaller than Tball leads to one more constraint,
namely,

�F� � �kF/q���/qvF� . �4.19�

Combined with Eq. �4.18� this leads to

kF/q � �F� � �kF/q���/qvF� �4.20�

as a necessary condition for the ballistic conductivity correc-
tion to be given by Eqs. �3.31�. If condition �4.19� is not
fulfilled, then the lower temperature limit of the behavior

calculated above will be given by T̃so rather than by Tball.

B. Quantitative predictions for experiments

We now give some quantitative estimates using parameter
values relevant for MnSi as follows �see Paper I, and the
references and discussion therein�: kF=1.45 Å−1, q /kF
=0.024, �F=23,000 K, me=4m0 with m0 the free-electron
mass, qvF�1,000 K, but it is possible that � is smaller than
�F by a factor of 40. This uncertainty in the value of the
Stoner gap is a substantial impediment for making experi-
mental predictions, especially since the theory depends quite
strongly on whether qvF is larger or smaller than �. Our
calculations are valid for qvF��.

The residual resistivity of the cleanest samples in Ref. 15
was �0�0.33 � � cm, which corresponds to �F��1,000. If

���F, this is inside the disorder window given by Eq.
�4.20�, and condition �4.18� is easily fulfilled. If � is substan-
tially smaller than �F, then the second condition in Eq. �4.20�
will be violated, and the lower limit of the ballistic regime as

calculated above will be given by T̃so rather than by Tball.
From Eqs. �4.4� and �4.5� we see that Tball is smaller than Tq
by a factor of about 4000, and from Eq. �4.15� we see that
T1−2 is smaller than Tq as long as � /�F�0.005, or �
�150 K. Finally, from Eq. �4.17� it follows that T1−2

Tball as long as � /�F�0.1. We conclude that the parameter
values of MnSi provide a sizeable ballistic regime. However,
depending on the size of �, it may be necessary to subtract
the Fermi-liquid T2 contribution to the conductivity in order
to observe the ballistic correction.

The absolute size of the effect, on the other hand, is very
small. From Eq. �4.11� we estimate that T1−2 is at best, for
the smallest conceivable value of ���500 K�, in the mK
range, and from Eqs. �3.31� we have ���L /�0��2
�10−7��F /��2T /�F. For �=500 K this yields ���L /�0��4
�10−4T /�F. For temperatures on the order of T1−2, this
makes for an extremely small effect, and even at T�1 K,
which requires subtraction of the Fermi-liquid contribution,
the effect is small.

It is conceivable that in other materials the effect is larger,
or that artificial systems can be constructed, e.g., optical lat-
tices, that have parameter values leading to a larger effect.
The most efficient way to increase the effect would be a
larger helix pitch wave number. In real systems, the basic
reason for the small absolute value of the effect is the pref-
actor �q /kF�3 in Eqs. �3.31�. This in turn reflects the fact that
any effect of the helix will reflect the large size �on an atomic
scale� of the helix, which leads to correspondingly small en-
ergy scales. The same comment holds for the conductivity in
the clean case; see Eqs. �3.11b� and �3.11c�. By contrast, if
one writes the observed resistivity of MnSi in the disordered
phase as �=�0	1+const� �T /�F�3/2
, then the experiment in
Ref. 15 yields const=O�106�. The anomalous temperature
dependence of the resistivity in MnSi is thus a very large
effect that must be related to effects on small length scales,
and is not likely to be associated with remnants of helical
order.

C. Conclusion

In conclusion, we have applied the effective model for
helimagnets that was derived in Paper III to determine the
effects of helical magnetic order on the electrical conductiv-
ity. In the clean limit, we reproduce the results obtained ear-
lier in Paper II, but the effective model allows for a much
simpler calculation. We have applied this theory to determine
the conductivity in the ballistic regime, which in helimagnets
is characterized by the requirement ���F��2T /��1. Remark-
ably, we have found that the temperature correction to the
resistivity in bulk helimagnets is linear in T, as it is in 2D
nonmagnetic metals. This analogy between 3D and 2D sys-
tems is a consequence of the anisotropic dispersion relation
of the helical Goldstone mode or helimagnon. The absolute
value of the effect, with parameter values appropriate for
known helimagnets, is very small due to the large size of the
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helix. We finally mention that the transport properties of he-
limagnets in the diffusive regime, ���F��2T /��1, remain to
be investigated. Preliminary results suggest that they are less
exotic than in the ballistic regime, with no effective reduc-
tion of the dimensionality.23

ACKNOWLEDGMENTS

This research was supported by the National Science
Foundation under Grants No. DMR-05-30314, DMR-05-
29966, and PHY-05-51164. Part of this work was performed
at the Aspen Center for Physics.

APPENDIX A: ELECTRICAL RESISTIVITY DUE TO A
GENERIC POTENTIAL

For pedagogical reasons, and to make a few technical
points that are not emphasized in the elementary literature,
let us consider the resistivity of nonmagnetic, spinless elec-
trons due to scattering by an effective dynamical potential.
The familiar example of electron-phonon scattering, which
leads to the Bloch-Grüneisen T5 law, is a particular realiza-
tion of this generic case. The development in SecIII A fol-
lows the same logic. The only differences are that the reso-
nance frequency of the bare Green’s function is different, and
that the potential depends on all three momenta in the scat-
tering process, not just on the net transferred momentum.

Consider spinless electrons interacting with a spin-
independent, frequency-dependent, effective potential
V�k , i��. We assume that the spectrum of the potential,
V��k ,u�=Im V�k , i�→u+ i0�, is soft at k=0 and u=0. The
Green’s function is diagonal in both spin and momentum,

G�p,i�� =
1

i� − �p − � �p,i��
, �A1�

where �p= p−�, with �p as the electronic energy-momentum
relation and � as the chemical potential. The self-consistent
Born equation for the self-energy �, depicted graphically in
Fig. 3, reads

��p,i�� = −
1

V
�

p
T�

i�

V�k,i��G�p − k,i� − i�� , �A2�

and the integral equation for the vertex function � in a ladder
approximation, also shown in Fig. 3, is

��p;i�,i� − i��

= ij�p� −
1

V
�

k
T�

i��

V�k,i���

�G�p − k,i� − i���G�p − k,i� − i�� − i��

� ��p − k;i� − i��,i� − i�� − i�� . �A3a�

If we define a scalar vertex function 
 by ��p ; i� , i�− i��
= ij�p�
�p ; i� , i�− i��, we find that 
 obeys an integral
equation


�p;i�,i� − i��

= 1 −
1

V
�

k
T�

i��

j�p� · j�p − k�
j2�p�

V�k,i���

�G�p − k,i� − i���G�p − k,i� − i�� − i��

� 
�p − k;i� − i��,i� − i�� − i�� . �A3b�

The polarization function and conductivity tensors are diag-
onal, �ij�i��=�ij��i��. The sum over fermionic Matsubara
frequencies in Eqs. �A3� can be transformed into an integral
along the real axis by standard methods. This procedure
yields two terms where the frequency arguments of the
Green’s functions lie on the same side of the real axis, and
two other terms where they lie on opposite sides. Only the
latter contribute to the leading result as the self-energy goes
to zero. Since the real part of the self-energy just renormal-
izes the Fermi energy, and the imaginary part, which gives
the relaxation rate, indeed goes to zero as T→0, we need to
keep only these retarded-advanced combinations for the pur-
pose of determining the leading low-temperature dependence
of the conductivity. The Kubo formula for the static conduc-
tivity �=lim�→0 Re ��i�→�+ i0� becomes

� =
e2

3�
�

−	

	 d�

4T

1

cosh2��/2T�
1

V
�

p
�j�p��2

� �G�p,� + i0��2
�p;� + i0,� − i0� . �A4�

The Green’s functions in Eq. �A4� ensure that the dominant
contribution to the sum over wave vectors in the limit of a
vanishing self-energy comes from p such that �p=�. Further-
more, since � scales with T, for the leading temperature de-
pendence we can neglect all � dependencies that do not occur
in the form � /T. In a nearly-free electron model, with a
spherical Fermi surface with Fermi wave number kF, and
j�p�=p /me with me the effective electron mass, we thus have

� =
e2kF

2

3me
2�

−	

	 d�

4T

1

cosh2��/2T�
����
�0���

. �A5a�

Here we have defined

���� �
1

V
�

p
���p�
�p;� + i0,� − i0� , �A5b�

�0��� �
− 1

V
�

p
���p�Im � �p,� + i0� , �A5c�

and we neglect the real part of the self-energy, which only
redefines the zero of energy.

Using analogous arguments, we find from Eq. �A3b� that
� obeys an integral equation

���� = 1 − NF� duV̄��u��nB� u

T
� + nF� � + u

T
��

� ��� + u�/�0�� + u� . �A6�

Here nB�x�=1 / �ex−1� and nF�x�=1 / �ex+1� are the Bose and
Fermi distribution functions, respectively, and
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V̄��u� =
1

SF
2

1

V2�
k,p

���k����p�V��k − p,u�k · p/k2,

�A7a�

with SF= �1 /V��k���k�, is an l=1 average of the spectrum of
the potential over the Fermi surface. For the purpose of find-
ing the leading temperature dependence of the conductivity,
it can be written

V̄��u� = V̄0��u� − V̄1��u� , �A7b�

with

V̄n��u� =
1

2kF
2�

0

2kF

dpp�p2/2kF
2�nV��p,u� . �A7c�

The integral Eq. �A6� is not easy to solve. However, in an
approximation that replaces ���+u� /�0��+u� under the in-
tegral by ���� /�0���, it turns into an algebraic equation
whose solution is

���� = �0���/�1��� . �A8a�

Here we have used the fact that, in the limit of a small
self-energy, one finds from Eqs. �A5c� and �A2�,

�0��� = − NF� duV̄0��u��nB� u

T
� + nF� � + u

T
�� ,

�A8b�

and we have defined

�1��� = − NF� duV̄1��u��nB� u

T
� + nF� � + u

T
�� .

�A8c�

We see that the vertex function � effectively replaces the
single-particle relaxation rate � with the transport relaxation
rate �1. To see the relation between the two, we recall that
the frequency u scales with the temperature. For potentials
where the frequency scales with some �positive� power of the
wave number, �1 will thus depend on a higher power of the
temperature as T→0 than �. As an example, consider the
case of electron scattering by acoustic phonons, where
V��p ,u��cp	��u−cp�−��u+cp�
, with c as the speed of
sound. In this case, �0����T3
0�� /T�, whereas �1���
�T5
1�� /T�, where


n�y� = �
0

	

dxx2�n+1�	2nB�x� + nF�x + y� + nF�x − y�
 .

�A9�

In this case, the single-particle scattering rate shows a T3

dependence, whereas the transport scattering rate, and hence
the resistivity, display the familiar Bloch-Grüneisen law,
��T5.

Most of the technical development sketched above can be
found in textbooks.24 What is usually not stressed is the fact
that the approximate solution, Eq. �A8a�, of the integral Eq.
�A6�, yields the asymptotically exact temperature depen-
dence �although not the prefactor� of the conductivity. The

fact that it does has, to our knowledge, never been estab-
lished within diagrammatic many-body theory �and it is not
proven by the above arguments�, but it can been seen from
the fact that the asymptotic solution reproduces the lowest-
order variational solution of the Boltzmann equation.25 The
relation between a diagrammatic evaluation of the Kubo for-
mula and solutions of the Boltzmann equation is complex,
and will be discussed in more detail elsewhere.23

APPENDIX B: POWER COUNTING FOR DIAGRAMS (i)
AND (ii)

Here we provide the arguments that lead to Eq. �3.20�. We
first do a power-counting analysis of Eq. �1�. From Eqs.
�1.5a� and �3.7c� we see that the soft helimagnon wave num-
ber k scales with temperature as kz�k�

2 �T. The frequencies
scale as u���T, and ���k ,u��1 /T2. Consequently, the
conductivity corrections ���i,ii� scale as ���TJ for a given
integrand J�k� 	or I�k�
.

First consider the integral Jij
++−,+�k�, Eq. �3.19a�. For

power-counting purposes, the integration variable p scales as
T0, and the leading term in the vertex 
 scales as 
�k ,p�
�k��T1/2. A representation that suffices for power counting
is thus

Jij
++−,+�k�

� k�
2 �

−	

	

d��
−1

1

d�
1

�� − i/2��2

1

� + i/2�

1

� − i/2� − vFk�

�
�2k�

2

k
�

0

vFk� dx

1 + x2 �B1a�

in the AGD approximation. For vFk�1 /� we thus have
Jij

++−,+�k���2k�
2 /k, with corrections carrying an extra factor

of 1 /vFk��1 /�T1/2, or

Jij
++−,+�k� � �2T1/2 + � , �B1b�

which leads to ����2T3/2+�T. Analogous arguments yield

Jij
++−,−�k� � �2T1/2 + � , �B2�

Jij
+−,+−�k� � �2T1/2 + � , �B3�

Jij
+−,++�k� � � . �B4�

The convolutions I, compared to the corresponding J, carry
an additional factor of k��T1/2. In addition, the resulting
vector nature of the integrand leads to another factor of either
k��T1/2, or kz�T. Therefore, the I carry an additional fac-
tor of T compared to the corresponding J. Terms that were
dropped in writing Eqs. �3.18�� involved J+++,+, J+++,−, J++,++,
and J++,−−, which are of higher order in the disorder by at
least three powers of 1 /�. Including terms of O��T�, we thus
can write the conductivity correction, Eqs. �3.18�,
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��ij
�i� + ��ij

�ii� =
− V0

4�

1

T
�

−	

	 d�

cosh2��/T�
1

V
�

k
�

−	

	 du

�
���k,u�

��nB� u

T
�Re�Jij

++−,+�k� +
1

2
Jij

+−,+−�k��
+

1

2
nF�u − �

T
�Re	Jij

++−,+�k� + Jij
+−,+−�k�

− Jij
++−,−�k� − Jij

+−,++�k�
� . �B5�

The J can be simplified by means of partial fraction decom-
positions. For the relevant combinations one finds

Re�Jij
++−,+�k� +

1

2
Jij

+−,+−�k�� � �2k�
3 � �2T3/2, �B6a�

Re	Jij
++−,+�k� + Jij

+−,+−�k� − Jij
++−,−�k� − Jij

+−,++�k�
 = o��T0� .

�B6b�

This leads to Eq. �3.20�.

APPENDIX C: DIAGRAM (vii)

Here we consider diagram �vii� in Fig. 5�c� as a prototype
of a class of diagrams that do not contribute to the leading
behavior of the conductivity if evaluated to lowest order in
q /kF. The leading contribution to the conductivity correction
from this diagram can be written as

��ij
�vii� =

− u0V0

8�me
2

1

T
�

−	

	 d�

cosh2��/2T��−	

	 du

�
nF�u − �

T
�

�Im
1

V
�

k
�R�k,u�

1

V
�

p

�k,p�GR�p�GA�p − k�

�
1

V
�

p
pi�pj�
�k,p��GR�p��GR�p��GA�p��GA�p� − k� ,

�C1�

which shows the �2,4� structure mentioned in Sec. III B 2.
The bosonic distribution function does not contribute to this
diagram, so it can be at most of O��T�. With the convolu-
tions evaluated for q=0, power counting shows that it is of
O��T2�, and an explicit calculation confirms this. Now we
expand the resonance frequency �1�p�, Eq. �3.6b�, to first
order in q :�1�p�=�p+p ·q /2me+O�q2�. For the leading con-
tribution to the first convolution in Eq. �C1� we then find

N+,−�k� �
1

V
�

p

�k,p�GR�p�GA�p − k�

�
�

�kF
2 � k�

2 kz

k3 +
k�

2 q

k2kF
+ O�q2�� . �C2�

We see that, at linear order in q, a factor that used to be
kz /k�kz /k��T1/2 gets replaced by q /kF�T0. The same
holds for the other convolution. As a result, the diagram is of
O��T�, and an explicit calculation shows that the dependence
of the prefactor on �F /� and q /kF are the same as for dia-
gram �iii�, with the exception of the additional factor of
�q /kF�2. We thus have

��ij
�vii� � �0�2� �F

�
�2� q

kF
�5 T

�F
. �C3�
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